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Abstract

A Navier±Stokes procedure has been developed to investigate the absorption phenomena about the free-falling

®lm ¯ow on a horizontal tube. The fully elliptic equations of momentum, temperature and concentration are solved
by using the SIMPLER algorithm, which incorporates the QUICK scheme and the incomplete Cholesky conjugate
gradient method for accuracy and e�ciency. Taking account of the surface-tension e�ects, the free-surface location
is carefully traced by the MAC method in a time-accurate manner. The details of the ¯ow and heat/mass transfer

phenomena, such as the free-surface location, the streamlines, the formation of recirculating region and the rate of
absorption, are seen to be well captured. The results are presented for various ¯ow rates; the surface tension is
found to play an important role in dictating the ¯ow ®eld especially when the ¯ow rate is low. # 1999 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Growing demand for the environmentally viable

alternate energy sources has renewed interest in the

absorption refrigeration system in recent years. One of

the most vital parts of the system is the absorber as it

often dictates the system performance. The absorption

process is very complex to analyze since it involves not

only the heat and mass transfer associated with the

absorption but also the ®lm ¯ow in which the free sur-

face is determined as part of the solution. A typical

absorber is composed of an array of horizontal cooling

tubes; the absorbent solution absorbs the low pressure

refrigerant vapor while ¯owing down along the tube

surface.

On an isolated single tube (see Fig. 1), most of the

earlier attempts to tackle this problem considered only

the heat/mass transfer aspect of the process by relying

on the assumed or simpli®ed velocity pro®les [1,2]. For

the ®lm ¯ow on the horizontal tube, Choudhury et al.

[3] assumed that the ¯ow is fully developed and used

Nusselt's analytic velocity pro®le and thickness [4] to

predict the heat/mass transfer process. Andberg and

Vliet [5] made use of the momentum equation to com-

pute the thickness from the continuity of the ¯ow.

However, the equations adopted so far have been of

the boundary-layer type to achieve computational e�-

ciency. The main di�culty of this approach arises in

the vicinity of the upper and lower stagnation points

where the thin boundary-layer approximation breaks

down and the surface tension becomes substantial due

to the abrupt change in the ®lm-surface curvature.

Also the procedure is not suitable for ¯ows that exhibit

the wavy free surface, which is commonly observed in
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a wide range of Reynolds numbers [6]. To overcome
these di�culties, one may resort to a procedure based

on the Navier±Stokes equations with an accurate free-
surface tracking method.
The purpose of this paper is to develop a such pro-

cedure that accounts for the surface-tension e�ects to
examine the details of the absorption process especially
near the stagnation points on a horizontal tube. To

authors' knowledge, little has been reported in this
regard and how big a change this would make is
largely unanswered; a successful procedure may have

broader application in similar situations, such as heat
exchangers that accompany the condensation and
evaporation.

2. Solution procedure

We consider single isolated tube on which the ®lm
¯ow is initiated by the absorbent solution falling from

the upper row as shown in Fig. 1. For constant ¯uid
properties, the continuity, momentum, energy and dif-

fusion equations for two-dimensional incompressible
unsteady laminar ®lm ¯ows are written as:

r� � u� � 0 �1�

@u�

@ t�
� �u� � r��u� � ÿr�p� � 1

Re
r�2u� ÿ 1

Fr
j �2�

@T �

@ t�
� �u� � r��T � � 1

RePr
r�2T � �3�

@C �

@ t�
� �u� � r��C � � 1

ReSc
r�2C � �4�

where the dimensionless variables denoted by the
superscript � are de®ned as

Nomenclature

Ar Archimedes number, Eq. (18)
C concentration
cp speci®c heat

D di�usion coe�cient
eij rate of strain tensor
Fr Froud number, Eq. (5)

g gravity
Ha heat of absorption
hM mass-transfer coe�cient

hT heat-transfer coe�cient
Ja Jacob number, Eq. (14)
k thermal conductivity
Le Lewis number, Eq. (14)

m0 mass ¯ux
n, ni unit normal vector
Nu Nusselt number, Eq. (19)

p pressure
Pr Prandtl number, Eq. (5)
q0 heat ¯ux

R tube radius
Re Reynolds number, Eqs. (5) and (18)
Sc Schmidt number, Eq. (5)

Sh Sherwood number, Eq. (19)
T temperature
t time
t, ti unit tangential vector

u, ui velocity vector
v0 inlet velocity

We Weber number, Eq. (11)
x position vector

Greek symbols

a thermal di�usivity
G mass ¯ow rate
d ®lm thickness

y angle measured from the upper stagnation
point

k curvature of the free surface
m viscosity

n kinematic viscosity
x, Z transformed coordinates
r density

s surface-tension coe�cient

Subscripts
0 inlet
e equilibrium

f ®lm
s free surface
v vapor

w wall

Superscripts
� dimensionless variables
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x� � x

d0
, t� � t

d0=v0

u � u

v0
, p� � pÿ pv

rv20
, T � � Tÿ Tw

T0 ÿ Tw

,

C � � Cÿ Cwe

C0 ÿ Cwe

�5�

Re � rv0d0
m

, Fr � v20
gd0

, Pr � n
a
, Sc � n

D

and d0=inlet ®lm thickness; v0=inlet falling velocity;
pv=vapor pressure; T0, Tw=inlet and wall tempera-
tures, respectively; C0, Cwe=inlet concentration and

equilibrium concentration of solution at Tw and pv, re-
spectively. Here u is the velocity vector, p the pressure,
T the temperature and C the concentration. The

Lagrangian equation of motion for the marker par-
ticles distributed on the free surface is also solved to
update the new free-surface location:

dx�s
dt�
� u�s �6�

The associated boundary conditions for the system
are

. solid wall:

u� � 0, T � � 0,
@C �

@n�
� 0

. inlet (AA '):

u� � u�0, T � � C � � 1

. plane of symmetry (BB '):

u�n � 0,
@u�t
@n�
� @T �

@n�
� @C �

@n�
� 0 �7�

. outlet (CC '): negligible di�usion in streamwise direc-
tion [7].

The magnitude of inlet velocity v0 is assumed to be
the free-fall speed from the upper tube, i.e. v0 �

��������
2gd

p

Fig. 1. Schematic of the ®lm ¯ow and boundary conditions.

J.K. Min, D.H. Choi / Int. J. Heat Mass Transfer 42 (1999) 4567±4578 4569



Fig. 2. Typical grid con®gurations for Re= 16.7: (a) 101 � 71 orthogonal grid for unsteady MAC calculation, (b) 198 � 45 non-

orthogonal grid for steady calculations.
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where d is the distance between the lower stagnation
point of the upper tube and the inlet plane; the inlet

®lm thickness d0 is then determined from the speci®ed
¯ow rate G:

G � rv0d0: �8�

The parabolic outlet condition is due to StuhltraÈ ger et
al. [7]; a linear extrapolation is used to follow the par-
ticle trajectory and to get out¯ow boundary values. At

the free surface, the shear stress is negligibly small and
thus the velocity ®eld must satisfy

e�ijn
�
i t
�
j � 0 �9�

along with the continuity at the surface cell. Here e �ij is
the rate of strain tensor and nj, tj are the normal and
tangential vector components in j-direction. The

dynamic condition at the surface, which includes the
surface-tension e�ects, may be expressed as

p�s �
2

Re
e�ijn
�
i n
�
j ÿ

1

We
k� �10�

where the Weber number is de®ned by

We � rv20d0
s
� Gv0

s
�11�

and the s and k are the surface-tension coe�cient and
curvature of the free surface, respectively. The bound-
ary conditions for the temperature and concentration

at the free surface are expressed by using Fick's law
and the vapor-pressure-equilibrium condition:

@T �

@n�

����
s

� ÿLe
Ja

1

Cs

@C �

@n�

����
s

�12�

C �s � EqT �s �13�

where

Le � D

a
, Ja � cp�T0 ÿ Tw�

Ha�C0 ÿ Cwe�
,

Eq � A1�T0 ÿ Tw�
�C0 ÿ Cwe�

�14�

and the linear absorbent assumption for a ®xed press-
ure is

Cs � A1Ts � A2: �15�

The new dimensionless number Eq is the measure of
the initial deviation from the equilibrium state: it is 1
when in equilibrium and less than 1 otherwise.

Observing that the continuity and momentum
equations can be decoupled from the system since the
free-convection e�ects and the rate of mass transfer

due to absorption are negligibly small, we break the
solution procedure into two: the continuity and

momentum equations are solved ®rst for the velocity
®eld and the free-surface location; the energy and con-
centration equations are then solved only in the ®lm

¯ow region over which a new nonorthogonal grid is
®tted. The velocity ®eld is also recalculated on a new
grid in the latter part of the solution to avoid any in-

terpolation error. In other words, the orthogonal grid
is used only to obtain the free-surface location, which
is treated as a ®xed boundary in the following calcu-

lation. This two-grid, two-step approach is advan-
tageous because an orthogonal grid is more convenient
in determining the free-surface location which moves
around before convergence while a nonorthogonal gen-

eral grid is better suited when dealing with an arbi-
trarily shaped ®xed computational domain as in the
present heat/mass transfer analysis.

Using the staggered grid, the SIMPLER algorithm
of Patankar [8] is adopted to solve the governing Eqs.
(1)±(4); the MAC method proposed by Tanaka and

Takaki [9] is suitably modi®ed and incorporated in the
procedure to track the free-surface location. The
steady state is considered to be achieved if the time-

averaged velocity components, the ®lm thickness, and
the root-mean-square (r.m.s.) velocity converge, or all
the initial marker particles have gone out the domain
as suggested by StuhltraÈ ger et al. [7].

3. Computational conditions and assumptions

The cases examined are the LiBr±H2O solution ¯ow-

ing down on the tube surface for a range of Reynolds
numbers, based on the inlet velocity and width, from
12.5 to 166.7. The tube radius, which is interrelated
with the ¯ow rate (or Re ) in the analysis, is kept con-

stant for all calculations. Note that, since we vary the
Reynolds number, it su�ces to consider just one tube
size. The size may be given an arbitrary value for the

present purpose, however, the value of 9.525 mm,
which is taken from a commercially manufactured
absorption-type refrigerator, is used in the study. The

inlet of the computational domain is placed at 7 mm
above the upper stagnation point (see Fig. 1) and the
initial velocity v0 comes out as 0.2237 m/s. The fully
developed ®lm thickness to the tube radius in the

present Re range varies from 0.1 to 0.15.
It is proper to mention here that some ¯uctuating

behavior is observed at lower Re range. Whether the

phenomenon is real or numerical aberration is yet to
be answered, however, as the unsteadiness is not sig-
ni®cant, we assume the ¯ow is steady and take the

long-time average to determine the free-surface lo-
cation. As described in the previous section, the free-
surface location is ®rst obtained by solving Eqs. (1)
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and (2) with associated boundary conditions on a

101 � 71 non-uniform orthogonal grid in a time-

marching manner. Upon reaching the steady state, a

new grid (198 � 45), which is nonorthogonal but con-

forms to the ®xed free surface, is generated for a more

accurate steady-state heat and mass transfer analysis.

The grid is chosen after a thorough numerical test and

the details will be given later. The two grid systems

along with the free-surface location are displayed in
Fig. 2.

4. Results and discussions

The streamline patterns and pressure ®elds near the
upper and lower stagnation points are shown in Fig. 3

Fig. 3. Streamlines and pressure ®eld for various ¯ow rates.
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for various ¯ow rates. Contrary to the common belief

that the ®lm is thinner when the ¯ow rate is smaller,

the stagnation ®lm thickness appears to increase as Re

decreases when Re< 40. This, what seems to be an

unusual phenomenon, may be explained as follows: the

®lm, coming out of the stagnation point, becomes thin-

ner as the ¯ow accelerates. However, the friction acting

on this thin ®lm retards the ¯ow and makes the ®lm

thickness increase. If the ®lm thickness were to

increase very much, it back¯ows and submerges the

thin upstream region. For Re = 12.5 and 16.7, a siz-

able region of recirculation develops in the stagnation

region. As the ¯ow rate increases, the recirculating

region disappears and the ®lm thickens to accommo-

date the increased ¯ow rate. The ¯ow exhibits the simi-

lar behavior near the lower stagnation point: the

strength of the recirculating region, which is present

for all cases, is smallest when Re 1 41.7 and the ¯uid

stays on the tube longest at that Reynolds number.

To examine the e�ects of the surface tension, calcu-

lations have been repeated for Re= 16.7 and 166.7

without the surface-tension e�ects, i.e. 1/We = 0 for

both cases. The results are compared with those with

the surface-tension e�ects in Fig. 4. Two results are

quite distinct in the low Re regime while they are

closely matched for the high Re ¯ow. For Re= 16.7,

the calculation without the surface-tension e�ects is

unable to predict the recirculating region in the upper

stagnation region and gives a very thin ®lm ¯ow. The

results resemble the boundary-layer-type calculation by

Andberg and Vliet [5]. When the ¯ow rate is large, the
surface-tension force diminishes and two calculations
give nearly identical results. The boundary-layer-type

calculation is expected to be e�ective in this ¯ow
regime.
The calculated ®lm shape in the entire domain is

plotted in Fig. 5. Compared in the ®gure are the
Nusselt solution

d
2R
� 0:909Re1=3f Arÿ1=3�sin y�ÿ1=3 �16�

and the empirical correlation by Rogers and Goindi
[10]

d
2R
� 3:716Re0:174f Arÿ1=3�sin y�ÿ1=3 �17�

where the ®lm Reynolds number and Archimedes num-
ber are de®ned by

Ref � 4G
m
, Ar � 8gr2R3

m2
: �18�

In light of the reasons stated above, it is not surprising

to see the agreement among the results is poor in the
stagnation region. The agreement is mixed however, in
the tube side: While the calculated ®lm thickness fol-

lows closely the Nusselt solution when the ¯ow rate is
low, the gap between the two becomes large as the
¯ow rate increases since it takes longer to attain the

Fig. 4. Streamlines and pressure ®eld without surface-tension e�ects for Re= 16.7 and 166.7.
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Fig. 5. Free-surface shapes for various ¯ow rates.

Fig. 6. Temperature and concentration distributions with/without surface-tension e�ects.
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fully developed state. The correlation by Rogers and

Goindi, on the other hand, looks good when

Re= 166.7 but becomes poor for the other two smal-

ler Reynolds-number cases. The experiments by Rogers

and Goindi was done in the ®lm Reynolds number
ranging 400 < Ref < 2000, which is much larger than

that used in the present paper. One may conclude that

this experimental relation cannot be extrapolated to

the small Reynolds numbers for which the surface-ten-

sion e�ects are important.

We now turn our attention to the heat and mass

transfer aspect of the problem. Among various ¯ow

rates, the results for Re = 16.7, which lies in the typi-

cal operating range, is presented. The wall temperature
is maintained at 308C while the temperature and the

concentration at the inlet are given by 408C and 0.612,

Fig. 7. Concentration pro®les for various streamwise sections for Re= 16.7: (a) with surface-tension e�ects, (b) without surface-

tension e�ects.
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respectively. The concentration of 0.612 is the equili-

brium concentration at 488C and 1 kPa, which is the
vapor pressure in the absorber. It is noted that, since

the inlet temperature is lower than the equilibrium
temperature for this concentration, the absorption

occurs as soon as the LiBr±H2O solution enters the

domain. For conditions stated above, the nondimen-
sional parameters take the following values: Pr = 21.4,

Sc= 2456, Le = 0.008, Eq = 0.573 and Ja= 0.058.

The concentration and temperature ®elds near the
upper and lower stagnation points are shown in Fig. 6.

The regions of recirculation seen in Fig. 3 are readily
identi®able in the ®gure: the one near the upper stag-

nation point is characterized by the high temperature
and the low concentration. The tiny recirculation

region near the lower stagnation point appears to have
little in¯uence on the concentration ®eld. The tempera-

ture in the region, however, is lower as the ¯uid is

trapped near the cooler wall. Note that, due to the
relatively large Schmidt number, the concentration

varies mostly in a thin region adjacent to the free sur-
face. Needless to say su�ciently many grids are needed

to accurately resolve this region. Fig. 7 depicts the con-
centration distribution across the layer at various

streamwise sections. The abscissa denotes the distance
from the tube wall normalized by the local ®lm thick-

ness, dmax. The rapid variation of the concentration

near the free surface appears to be well captured at all
sections. We will come back to this point later in Fig.

8. Among the pro®les, the one at y=58 with surface
tension (Fig. 7(a)) may be singled out for its odd be-

havior. The dip in the pro®le in the middle of the layer
is due to the ¯ow recirculation described earlier. The

back¯ow of the weak solution in the outer part of the

layer is responsible for this phenomenon as it mixes
with the strong solution inside.

The ®lms, regardless the surface-tension e�ects,
eventually reach the same fully developed thickness. As

the layer thins, the temperature gradient normal to the
free surface increases and so does the rate of absorp-
tion. The thickening of the ®lm does the opposite. This

phenomenon is well illustrated in Fig. 8, which com-
pares the Sherwood number

Shs � hMsR

D
� m 00s R

r�C0 ÿ Cwe�D �19�

along the free surface, where m0s denotes the rate of
absorption at the free surface. For the case with the

surface-tension e�ects, the absorption rate drops o�
sharply in the early stage due to the thick layer but
recovers handsomely as the layer begins to thin down.

As a further proof that the present grid (198 � 45) is
adequate, the results obtained with two other grids
(138 � 30, 248 � 55) are also compared in the ®gure. It

shows that the results of the two ®ner grids are nearly
identical and con®rms the solution is accurate. The
absorption in the other case (without surface-tension
e�ects) decreases continuously until it levels o� for

y>308. The discrepancy between the two, which per-
sists even after the ®lm thickness coincide, say y>308,
may be attributed to the inertia or transient e�ects.

The higher rate of absorption generates more heat and
sends the temperature higher. This in turn increases
the normal temperature gradient and also the rate of

absorption. In other words, the cycle is self-sustained
and goes on until the concentration and temperature
®elds fully develop. This argument is supported by the

Nusselt number distribution along the tube wall shown
in Fig. 9. The Nusselt number is de®ned as

Nuw � hTwR

k
� q 00wR
�T0 ÿ Tw�k �20�

Fig. 8. Distribution of absorption rate at the free surface for

Re= 16.7.

Fig. 9. Heat ¯ux at the tube wall for Re= 16.7.
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where q0w denotes the heat ¯ux through the tube wall.
The lower heat ¯ux in the region of recirculation com-

pared to the attached-¯ow case is due to the thicker
layer and is consistent with the fact observed in Fig. 8.
However, comparing with Fig. 8, there is a time lag

between the heat generation by absorption and the
heat removal through the wall. This suggests that the
increased absorption leads to the increased heat ¯ux

and not the other way around.
The rapid variation in Shs and Nuw near the lower

stagnation point can be explained by the ®lm shape in

that region. Comparing with the surface-tension-free
case, the ®lm goes through thicker (y 1 1508), thinner
(y 1 1708), and then thicker again pattern to produce
the wiggly behavior in these quantities. The cumulative

absorption relative to that with the surface-tension
e�ects is plotted in Fig. 10. As has been witnessed, the
cumulative absorption for the surface-tension-free case

is larger until it is overtaken by the other at about
y=508. The total absorption with the surface-tension
e�ects comes out approximately 4% larger than that

without.
So far, we have examined one inlet-condition case

and demonstrated that the ¯ow and heat/mass trans-
fer characteristics are quite distinct when the surface-

tension e�ects are included. We believe that the
change in the initial and/or boundary conditions
leads to a variety of situations and a parametric

study would be very helpful in predicting the absor-
ber performance.

5. Conclusions

The absorption process about the free-falling LiBr±

H2O ®lm ¯ow on a horizontal tube has been investi-
gated. This novel approach, that solves the fully elliptic

governing equations and takes account of the surface-
tension e�ects, allows one to capture details of the
¯ow ®eld which are quite distinct from those obtained

by a boundary-layer-type procedure. It has been
shown that a small but hydrodynamically signi®cant
region of recirculation forms next to the free surface

near the stagnation point and, consequently, alters the
mass transfer characteristics as well as the absorption
rate. The phenomenon becomes more pronounced as

the ¯ow rate decreases.
It is clearly demonstrated that the use of the

Navier±Stokes equations with full consideration of the
surface-tension e�ects is essential to accurately predict

the absorber performance. A thorough parametric
study regarding the initial and boundary conditions on
temperature and concentration would yield more useful

information on the range where this procedure is most
needed.

Acknowledgement

This work was supported by the Korea Science and

Engineering Foundation under Grant 971-1008-053-1.
The support is gratefully acknowledged.

References

[1] N.I. Grigor'eva, V.E. Nakoryakov, Exact solution of

combined heat- and mass-transfer problem during ®lm

absorption, Journal of Engineering Physics 33 (1977)

1349±1353.

[2] G. Grossman, Simultaneous heat and mass transfer in

®lm absorbtion under laminar ¯ow, Int. J. Heat Mass

Transfer 26 (1983) 357±371.

[3] S.K. Choudhury, D. Hisajima, T. Ohuchi, A.

Nishiguchi, T. Fukushima, S. Sakaguchi, Absorption of

vapors into liquid ®lms ¯owing over cooled horizontal

tubes, ASHRAE Transactions: Research 99 (1993) 81±

89.

[4] W. Nusselt, Die Ober¯aÈ chenkondensation des

Wasserdampfes, Z. Ver. dt. Ing. 60 (1916) 541±546.

[5] Andberg JW, Vliet GC Absorption of vapors into liquid

®lms ¯owing over cooled horizontal tubes. In:

Proceedings of the ASME/JSME Joint Thermal

Engineering Conference, Honolulu, HI, 1987, pp. 533±

541.

[6] H. Sabir, K.O. Suen, G.A. Vinnicombe, Investigation of

e�ects of wave motion on the performance of a falling

®lm absorber, Int. J. Heat Mass Transfer 39 (1996)

2463±2472.

[7] E. StuhltraÈ ger, Y. Naridomi, A. Miyara, H. Uehara,

Flow dynamics and heat transfer of a condensate ®lm

Fig. 10. Ratio of cumulative absorption (surface-tension-free

to with-surface-tension cases) along the ®lm surface for

Re= 16.7.

J.K. Min, D.H. Choi / Int. J. Heat Mass Transfer 42 (1999) 4567±4578 4577



on a vertical wallÐI. Numerical analysis and ¯ow

dynamics, Int. J. Heat Mass Transfer 36 (1993) 1677±

1686.

[8] S.V. Patankar, Numerical Heat Transfer and Fluid

Flow, McGraw-Hill, New York, 1980, Chap. 6.

[9] A. Tanaka, R. Takaki, Analysis of pipe ¯ow with free-

surface Part I: numerical computation, Fluid Dynamics

Research 13 (1994) 229±247.

[10] J.T. Rogers, S.S. Goindi, Experimental laminar falling

®lm heat transfer coe�cients on a large diameter hori-

zontal tube, The Canadian Journal of Chemical

Engineering 67 (1989) 560±568.

J.K. Min, D.H. Choi / Int. J. Heat Mass Transfer 42 (1999) 4567±45784578


